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The problem of designing laminated plates, which consists of finding a set of designs that give the plate the stiffness characteristics 
required is investigated. The problem is considered in a discrete formulation taking account of the constancy of Poisson's ratio 
and the variability of Yo~ang's modulus through the plate thickness. The initial design problem reduces to the problem of convex 
combinations, for the solution of which the convolution method is employed: © 2000 Elsevier Science Ltd. All rights reserved. 

The problem of designing laminated plates has been the subject of a large number of publications. The optimal 
design problem of obtaining a plate that minimizes any functional (weight, sag, etc.) has been well studied. The 
problem of finding a method of designing a plate with specified (not necessarily optimal) characteristics [1-3] has 
been considerably less studied. For a continuous distribution of characteristics through the plate thickness, this 
problem was examined in [4] using extremum principles. 
A solution of the discrete design problem formulated in [2-5] is given below. 

1. F O R M U L A T I O N  O F  T H E  P R O B L E M  

Consider a laminated plate with layers parallel to the coordinate plane and made of homogeneous isotropic 
materials. It is required to choose the distribution of materials in the layers so as to give the plate specified stiffnesses 
(stiffnesses in a plane, asymmetrical stiffnesses, and flexural stiffnesses). 

The coordinate transverse to the plate will be denoted byy. In the laminated plate Young's modulus E(y) and 
Poisson's ratio v(y) are functions of the variable y. 

The design problem is as follows. It is required to determine the distribution of the material characteristics that 
gives the plate a specified stiffness in its plane S °, asymmetrical stiffness S l, and flexural stiffness S e. 

For this, it is neces:~ary to solve the problem 

1/21 "--E(Y) , =S° , 1~2 E(y)y d =S I, I)2 E(v)v 2 " - ~  a v = S  2 (1.1) 
_l121-v2(v )  ay -i/2 I -v2(v)  Y -112 . . l - v  ( v )  " 

The integrals in (1.1) give an expression for the appropriate stiffnesses of the plate in terms of the elasticity 
constants of the layers forming it [2-4]. 

For simplicity we will assume that v(y) = const. Then (1.1) is a problem with regard to E(y). In practice, a finite 
(often small) number of materials is used. 

To discretize the problem, we will stipulate that the plate is divided into rn layers of equal thickness l/m, and 
the function E(y) is constant in the ranges [ -1/2 + (i - 1)/m, -1 /2  +i/m). Here and below, i = 1 . . . . .  m. 

The required quantities are E i. In the physical sense, E i >i O. Problem (1.1) can be reduced to the following 

~ x i = l ,  x i = E i / m S  0>0 ,  Z ViXi=V 
i i 

(1.2) 
l 112+Jim = S  I 

vii = - -  ~ .v/dr+. u t / S  0, 1=1,2 (vi=(vii,ui.~),_ V = (Vl,V2)) 
m - 1 1 2 + ( i - I ) l m  

2. T H E  D I S C R E T E  P R O B L E M  O F  C O N V E X  C O M B I N A T I O N S  

We will consider the following problem. Let Z,  C [0, 1] be a finite set (consisting of n numbers), and let vi and v 
E / ~  be specified vectors. It is required to determine the numbers xi that are the solution of the following problem 

Y. vix i = v (2.1) 
i 
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Y. x, = I (2 .2 )  
i 

-~i e Z,,, i = I ..... m (2.3) 

Problem (2.1), (2.2) with the condition 

t) <~ .~ <~ 1 (2 .4)  

is the problem of convex combinations (PCC) examined earlier [1, 2]. Problem (2.1)-(2.3) is a discrete PCC. 
The purpose of the present paper is to construct a general solution of problem (2.1)-(2.3), i.e. the set of all 

coefficients xi E Z,, of the convex combinations of the vectors vi that give the vector v. 
We will remove the discreteness condition (2.3) and replace it with condition (2.4). The general solution of the 

PCC (2.1), (2.2), (2.4) is well known and has the form [1, 2] 

M 
x i = Y. P/vX,/. i =  I ..... m (2.5) 

y=l  

where P.~ = (Pls . . . . .  Pm-~) is a certain finite set of solutions of the PCC (2.1), (2.2), (2.4), and 
h.~ (y = 1 . . . . .  M) are any numbers satisfying the conditions 

M 
Y L~=I .  0<~k~<~l (2.6) 

y-.:l 

In order words, the set A(v) of solutions of the PCC(2.1),(2.2),(2.4) has the form 

A(v) = cony {Pv' Y= I .... 341. 

A method for constructing the system of vectors {P~, -,/= 1 . . . . .  M} was described earlier [1, 2], and examples 
of its use are given in [3-5]. It was shown [2] that, for random perturbations of the data in the PCC (2.1),(2.2),(2.4) 
with a probability of unity, the system {P.~, ~ = 1, . . . ,  M} is identical with the set of extreme points of the polyhedron 
A(v) of the solutions of the PCC (2.1),(2.2), (2.4). This means that {P.~, ~/=1 . . . . .  M} is the minimum system of 
points producing a set of solutions of the PCC (2.1),(2.2),(2.4). 

The set Z~ = {x: xi E Z,,} is a discrete grid in R m. The set of solutions of the PCC (2.1)-(2.3) is 
A(v) n zL 

Problem (2.1)-(2.3) will be solved if we indicate the vectors given by formulae (2.5) and (2.6) and which satisfy 
the condition xi E Z, .  

Relations (2.5) and (2.6) can be regarded as a PCC with respect to h~. The convolution algorithm proposed 
earlier [1, 2] indicates the following [which also follows from the convexity of the set 
A(v)]: if the first i - 1 equations in (2.5) are satisfied, then the following ith equation is solvable when, and only 
when, 

xie I; = [min i, m:tx, I (2.7) 

Generally speaking, the interval Ii depends on xl, . . . ,  xi-1. 
From (2.7) we obtain the necessary adn sufficient condition for the existence of a solution of the discrete PCC: 

Z(i) = Z,, n I i ;~ ~D for all i (2.8) 

Since the intervals Ii depend on Xl, . . . ,  xi-1, a tree T'arises. Its apex T(0) corresponds to i = 1, the absence of a 
solution. Branching on the level T(i - 1) corresponds to the points Z(i). Any branch going from the root T(0) to 
the level T(m) gives the solution of the discrete PCC (2.1)-(2.3). On the other hand, the branch from the root 
T(0) to the level T(m) corresponds to any solution of the discrete PCC. Thus, the given tree gives a set of all solutions 
of the discrete PCC. 

3. N U M E R I C A L  A L G O R I T H M S  

Changing from the PCC (2.1),(2.2),(2.4) to the PCC (2.5),(2.6) - construction o f  the system o f  vectors 
{P~ - / =  1, . . . ,  M}. The system of vectors can be constructed using the convolution algorithm described earlier in 
[1, 2]. Its properties (in particular, the property of optimality) have been described above. More details can be 
found in [1-5]. 

Checking the solvability o f  the PCC (2.5),(2.6) for the right-hand sides o f  the set Z ,  - construction o f  the 
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intervals Ii. The simplex method can be used to construct the intervals [mix/, max/. For this, at the (i - 1)th step, 
the first i - I equations from (2.5) and Eq. (2.6) must be regarded as constraints, the objective function L(L)  must 
be constructed on the basis of the ith equation from (2.5) 

M 
L(X)= E e~rxr (3.1) 

y---I 

and the problem 

L(X) ~ rain (max) (3.2) 

must be considered. 
The solution of problem (3.2)(maximization and mimimization) by the simplex method requires less computer 

memory than the convolution method. 

Construction o f  a tree. A tree can be constructed by any method, since, in practice, its size proves not to be very 
large (see below). 

Thus, the numerical algorithm for solving the discrete PCC has been reduced to solving well-known problems 
- a PCC and a probk:m of linear programming. 

4. T H E  SOLVABILITY O F  T H E  PCC A N D  T H E  S T R U C T U R E  O F  ITS S O L U T I O N  

Consider an internal point [6] x of the set A(v), i.e. a point for which the vector y and the number ~i are such that 
x + y~ lies in A(v) when 0 < T < B. Substituting x + yx into relations (2.1) and (2.2) and differentiating with respect 
to 7, we obtain that the vector y satisfies the equalities 

5" VcV i = 0, 5~ Yi = 0 (4.1) 
i i 

Introducing the vectors wi = (vtl, . . . ,  vt,n) and w0 = (1, . . . ,  1), we can rewrite (4.1) in the form 
wiy = 0 (l = 0, 1, 2) for each vector y connecting l internal points. This means that the set A(v) lies in the hyperplane 
specified by Eqs (4.1) and has a dimensionality less than m (remember that the solutions of PCC (2.1),(2.2),(2.4) 
are the elements Rm). 

By virtue of this property problem (2.5),(2.6) for an arbitrarily specified x will generally not have solutions since 
the random incidence of the point on the hyperplane has a probability of zero. 

In view of this, it i,; possible to propose a perturbation of the set {Ps 3' = 1 . . . . .  M} with the aim of giving the 
convex shell of the perturbed set solidity (a dimensionality of m). We conclude from (4.1) that the set {P~ 3' = 1, 
. . . .  M} should be perturbed by the vectors wi = (vi, 1) [which are solutions of (4.1) and "perpendicular" to A(v)]. 

We will consider a perturbation of the set {P~ 3' = 1 . . . . .  M} of the form {P~ + r~w~ mod 3, 
3' = 1 . . . . .  M}, where ¢ is a random quantity uniformly distributed in the segment [0, 1], r is the characteristic 
magnitude of the perturbation and mod denotes division with respect to modulus. With a probability of unity, conv 
{P~ + r~wv mod 3 } has a dimensionality of m. 

Suppose problem (2.5) with the vectors {P~ + r~w~ mod 3, 3' = 1 . . . . .  M} instead of {Ps 3' = 1 . . . . .  M} has the 
solution x. This solut~ion can be represented in the form of the convex combination 

M 

x= • (Py +r~WymoU3)~.y (4.2) 
y=l 

Substituting this expression into (2.1) and taking account of the fact that {P~ 3' = 1, . . . ,  M} satisfy equalities 
(2.1), we obtain 

This expression is the error with which the solution x satisfies Eq. (2.1). It can be seen that it is of order r. 

5. N U M E R I C A L  T E S T S  

Programs were written to obtain simplicial solutions of PCC, to construct a tree, and to solve the problem of linear 
programming. 

Test problem. The :following was used as the test problem. A certain structure of the laminated plate, E/*, was 
specified and the stiffnesses for it, S ~ (v -- 0, 1, 2), were estimated by means of formulae (1.1). Then, the design 
problem was solved for these stiffnesses. A solution for E/* should exist in the set of solutions of the design problem. 
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This property was also checked. Solutions were obtained for a number  of layers m = 8--12. The number  of solutions, 
M, of the PCC (2.1),(2.2),(2.4) did not exceed 100. As a consequence, the PCC (2.5),(2.6) was in the form of 8-12 
equations with a maximum number  of variables of 100. In the examples checked, the solution were unique; E:. 
This corresponds to what was stated in Section 4. 

A problem with a perturbed system {P~ - / =  1 . . . . .  M}. We will give the following problem as a typical example. 
The number  of layers m = 7. The design {E:, i = 1 . . . . .  7} = {3, 5, 3, 5, 3, 5, 3} will be assumed to be known. The 
corresponding stiffnesses S O = 3.8571, S 1 = 0, and $2 = 1.1348. The number  of solutions of the PCC (2.1),(2.2),(2.4) 
is M = 12. 

The set of materials Z6 = {1, 2, 3, 5, 7, 10} is used for the design. 
The perturbation parameter  was taken to be equal to r = 0.05. The number  of nodes of the tree T on the various 

levels is as follows: 

Level i 0 1 2 3 4 5 6 7 
Number  of nodes 1 5 19 49 157 80 12 4 

The following designs were obtained: E1 = {5, 3, 5, 5, 1, 7, 1}, E2 = {3, 5, 5, 5, 1, 5, 3}, E 3 = {3, 5, 3, 5, 3, 5, 3} 
, and E 4 = {1, 7, 3, 5, 3, 3, 5}. The design E 3 matches the initial design. 

The stiffnesses corresponding to the designs obtained are S O --- 3.857 and S 2 = 1.135 for all the designs, while 
S 1 is equal to 0.163, 0.245 and 0.082. 

6. O T H E R  D E S I G N  P R O B L E M S  

A problem with stiffnesses from a specified interval. As  noted in Section 4, there is often no solution to the design 
problem. In numerical calculations it can be seen that, in a number  of cases, solutions arise that give plate stiffnesses 
close to those required but  not precisely equal to them [7]. We will weaken the equalities by requiring that the 
stiffnesses S v (v = 0, 1, 2) belong to specified intervals [S v - 8S ~, S ~ + 8S "] (v = 0, 1, 2). After the additional 
variables Xm+l, . . , ,  Xm+5 have been introduced, the inequalities 

S v _~S v <~ ~, dvixi <~ S v +~S v 
t 

reduce to the following PCC 

Y~ -~i=l.  x i t > 0  
i 

U liX i - - X m + 2 / _ l  =111 (6.1) 
i 

E v li.ri + xm + 21 = v I + ~)SI ]( Sl - kS/) 
i 

The  quantities {vti} are defined above, and 

x i =(E  i /m) (S  0 -8S0) .  u! =(S t +SSI)/(S t -8S1) ,  l= 1,2 

The problem o f  the discrete optimization pfplates. Let the objective function (weight or price) M(x) be specified 
for the plate. It is required to solve the problem of minimizing M(x) with constraints (2.1)-(2.3). To do this, we 
construct a set X of solutions of the PCC (2.1)-(2.3) by the method set out above, after which the solution is obtained 
by minimizing the function M(x) in the finite set X. 
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